This work consisted of studying the effect of saline constraint represented by different concentrations of NaCl (0, 2, 4, 8 and 11 g / l) at Acacianilotica on certain nursing parameters (germination, growth, biochemical and nutritional) and the survival rate one year after transplanting young clubs in field. The results obtained 14 days after seeding show that the germination rate falls below 40 g / l of NaCl and passes from 90% to 39.2% to 11 g / l of NaCl. After 3 months of stress, it is spring that the growth marked by the height, the diameter of the collar, the number of sheet and the foliar surface decrease as the NaCl concentration increases unlike ray biomass. Salinity has favored the accumulation of soluble, polyphenol, proline and total protein levels in the plant during the experimentation. Regarding the nutritional effect, NaCl negatively affects the nutritional scale of the plants. One year after transplantation, NaCl processed plantations have the best survival rates and the highest was obtained with 4 g / l of NaCl (89.61%). Thus, the submission of young Acacia nilotica plants to a salt strike of 4 g / l NaCl could allow to produce saltwoods for the salinity of the Sahelian zone of Cameroon and this fact contribute to the success of the reforestation campaigns by lower decreases of the mortality rates of transplantation.
Published in | Plant (Volume 12, Issue 4) |
DOI | 10.11648/j.plant.20241204.16 |
Page(s) | 131-141 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2024. Published by Science Publishing Group |
Acacia nilotica, Salt Stress, NaCl, Sahelian Area, Transplantation
[1] | Picouet M., (2001) « Population, Environnement et Développement » [Population, Environment and Development]. In Lery A.,Vinard P., ed. Population et developpement: Les principauxenjeux cinq ans après la conférence du Caire, Paris, Document et Manuels du CEPED, 12: 13-23. |
[2] | Abdelly C., (2004). Effet du déficithydrique sur la croissance et l’accumulation de la proline chez Sesuviumportulacastrum[Effect of deficit hydric on growth and prolinaccumulation in Sesuviumportulacastrum]. Revue des régionsArides, Tome 1, No. Spécial: 234-241. |
[3] | Lachhab, L., Louahla, S., Laamarti, M., et Hammani, K. (2013). Effect d’un stress salin sur la germination etl’activitéenzymatique de deux genotypes de Medicagosatives [Effect, of saline stress on germination and enzymatic activity in to two genotype of Medicagosatives]. International Journal of Innovation and AppliedStudies, 2(3), 511-516. |
[4] | Djerroudi, Z. O., Belkhodja, M., Bissati,S., et Hadjadj, S. (2010). Effet du Stress Salin sur l’accumulation de Proline chez deuxespècesd’Atriplexhalimus L. etAtriplexcanescens (Pursh) Nutt [Effect of saline stress on proline accumulation in two species of Atriplexhalimus L. et Atriplexcanescens (Pursh) Nutt]. European Journal of Scientific Research. vol. 41, n°2, pp 249-260. |
[5] | AlbouchiA.,Bejaoui Z. and El Aouni M. H.(2003). Influence of moderate or severe water stress on the growth of CasuarinaglaucaSieb. seedlings. Sécheresse, 14, 137-142. |
[6] | Ashraf M. and Harris. (2004). Potentialbiochemicalindicators of salinitytolerance in plants. Plant Science, 166: 3-6. |
[7] | ThourayaR’him, Imen T, Imen H, Riadh I, Ahlem B, Hager J. (2013). Effet du stress salin sur le comportementphysiologiqueetmétabolique de troisvariétés de piment (Capsicum annuum l) [Effect of saline stress on the physiological and metabolic behavior of three varieties of peppers (Capsicum annuum)]. Journal of Applied Biosciences 66, 5060–5069. |
[8] | Türkyilmaz B., YildizAkta L., Avni G. (2011): “Salinity induced differences in growth and nutrient accumulation in five barley cultivars”, Turkish J. of Field Crops, 16, 84-92. |
[9] | Anonyme. (2007). Plan de développement de la Région de l'Extrême-Nord, Cameroun. [Development plan of the Far North Region of Cameroon]. 75-103. |
[10] | Munns, R., James, R., and Lauchli, A. (2006). Approaches to increasing the salttolerance of wheat and othercereals. J. Exp. Bot., 57, 1025-1043. |
[11] | CGES (Cadre de GestionEnvironnementaleetSociale). 2017. Rapport final. Pp 34-68. |
[12] | Maillard J., (2001). Le point sur l’irrigationet la salinité des sols en zone sahélienne. Risquesetrecommandations. Handicap International.[Update on irrigation and soil salinity in the Sahelian zone: Risks and recommendations]. 34 p. |
[13] | HamawaYougouda, Baye-Niwah Claudette, KepwaFils Bill Franck Steve etMapongmetsem Pierre Marie. (2020). Effet de Prétraitements sur la Germination des Semences de Acacia senegal (L.) Willd. (Mimosaceae) dans la Zone Sahélienne du Cameroun. [Effects of pretreatment on the germination of Acacia senegal seeds in the Sahelian zone of Cameroon]. European Scientific Journal 16: 3. 1857- 7431. |
[14] | KabongoTshiabukole. (2018); Evaluation de la sensibilité aux stress hydriques du maïs (zeamays l.) cultivedans la savane du Sud-Ouest de la RD Congo, cas de Mvuazi.[Evaluation of the sensitivity to water stress of maize (Zea mays l.) grown in the savannah of southwestern D. R. Congo, case of Mvuazi]Thèse de DoctoratPhd, Faculté des Sciences Agronomique. UniversitéPédagogiquenationale, 161p. |
[15] | Jeong-Ho, L., Kee-Jai, P., Bum-Keun, K., Jin-Woong, J., & Hyun-Jin, K. (2012). Effect of salinity stress on phenolic compounds and caro-tenoids in buckwheat (Fagopyrumesculentum M.). sprout. Food Chem, 135, 1065-1070. |
[16] | Konate N. M., (2010) Diversitéinterspécifiqued'efficienced’utilisation de l’eau des acacias sahéliensetaustraliens [Interspecies diversity of water-use efficiency of Sahelian and Australian acacia trees] Thèseprésentée pour l’obtention du titre de Docteur de l’Université Henri Poincaré, Nancy-I enBiologieForestière. 122p. |
[17] | Bradford M. M., (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. Anal. Biochem. 72 248–254. |
[18] | Cooper G. R. and McDaniel V. (1970). The determination of glucose by the ortho-toluidine method (filtrate and direct procedure). Standard Methods of clinicalchemistry. 61: 159-170. |
[19] | Conroy J. P., Virgona J. M., Smillie R. M., Barlow E. W. (1988) Influence of droughtacclimation and CO2 enrichment on osmoticadjustment and chlorophyll a fluorescence of sunflowerduringdrought. Plant Physiol 86: 1108-1115. |
[20] | Ringel, C., Siebert, S. and Wienhaus, O. (2003). Photometricdetermination of proline in quartz microplates: remarks on specificity. AnalyticalBiochemistry, 313: 167-169. |
[21] | Dewanto V. W. X., Adom K. K., Liu R. H. (2002). Thermal processingenhances the nutritional value of tomatoes by increasing total antioxidantactivity. Journal of AgricultureandFoodChemistry.50,310-3014. |
[22] | John MK. (1970). Colorimetricdetermination of phosphorus in soil and plant materialswithascorbicacid. SoilSci; 109: 214-20. |
[23] | Pauwels, J. M., Van Ranst, E., Verloo, M. and Mvondo, Z. A., 1992. AnalysisMethods of Major Plants Elements. PedologyLaboratoryManual: Methods of Plants and SoilAnalysis. Stock Management Equipment of Worms and Chemical Equipment. PublicaAgricol: 28. 15. |
[24] | Chapman, G. W., and Allan, G., 1979. Techniques de plantations forestières [Forest plantation techniques]. ETUDE FAO: FORETS. 96p. |
[25] | KheloufiAbdenour. 2019. Contribution à l’étude des effets de la sécheresse et du stress salin sur l’écophysiologie des espècesd’acaciaenAlgérie [Contribution to the study of the effects of drought and saline stress on the ecophysiology of acacia species in Algeria]. Thèse de doctoratenbiologie. Université de Batna 2, faculté des sciences de la nature et de la vie, départementécologie et environnement. 136 p. |
[26] | Adem, G. D., Chen, G., Shabala, L., Chen, Z. H., and Shabala, S. (2020). GORK channel: a master switch of plant metabolism? Trends Plant Sci. 25, 434–445. |
[27] | Issaad G.,(2013). Statutnutritionneletplasticité de réponse aux stress chez un modèlevégétale (TriticumdurumDesf.) [Nutritional status and plasticity of stress response in a plant model (Triticum durumDesf.)]. Thèse. UniversitèBadj- Mokhtar. ANNABA.15-35. |
[28] | Rejili, M., Vadel, A. M., Guetet, A., Mahdhi, M., Lachiheb, B., Ferchichi, A. & Mars, M. (2010). Influence of Temperature&Salinity on the Germination of Lotus creticus (L.) from the Arid Land of Tunisia. African Journal of Ecology, 48: 329-337. |
[29] | AzevedoNeto A. D., Prisco J. T., En´easFilho J., Lacerda C. F., Silva J. V., Costa P. H. A., Gomes Filho E. (2004). Effects of salt stress on plant growth, stomatalresponse and solute accumulation of differentmaizegenotypes. Braz. J. Plant Physiol. 16, 31–38. |
[30] | Hajlaoui H., Denden M., Bouslama M. (2007). Etude de la variabilitéinterspécifique de tolérance au stress salin du poischiche (Cicer arietinumL.) au stade germination. [Study of inter specific variability of tolerance to salt stress of chickpea (Cicer arietinum L.) at the germination stage]. Tropicultura25, 168-173p. |
[31] | Kheloufi, A., Mansouri, L. M. &Boukhatem, Z. F. (2017). Application and use of sulfuricacid to improveseed germination of three acacia species. Reforesta, 3: 1-10. |
[32] | Kheloufi, A., Chorfi, A. and Mansouri, L. M. (2016). Comparative effect of NaCl and CaCl2 on seed germination of Acacia saligna L. andAcacia decurrensWilld. International Journal of Biosciences, 8(6): 1-13. |
[33] | Karoune S., Kechebar1 M., Halis Y., Djellouli A. etRahmoune C. (2016); Effet du stress salin sur la morphologie, la physiologie et la biochimie de l’Acaciaalbida [Effect of salt stress on the morphology, physiology and biochemistry of Acacia albida]. Journal Algérien des RégionsArides, 14: 73. |
[34] | Mamadou O., Kumar d., Diouf M., Nautiyal S. etDiop T. (2014). Effet de la salinité sur la croissance et la production de biomasse de deux provenances de Jatropha curcas L. cultivésenserre, [Effect of salinity on growth and biomass production of two provenances of Jatropha curcas L. grown in greenhouses]. Int. J. Biol. Chem. Sci., 8: 46-56. |
[35] | Kheloufi, A. (2017). Germination of seeds from two leguminous trees (Acacia karroo&Gleditsiatriacanthos) following different pre-treatments. Seed Science & Technology, 45: 1-4. |
[36] | Parida A. K. and Das A. B. (2005). Salt tolerance and salinityeffects on plants: a review. Ecotoxicology and EnvironmentalSafety (60), pp. 324-349 |
[37] | Fahad S., Hussain S., Matloob A., Khan F. A., Khaliq A. and Saud S. (2015). Phytohormone and plant responses to salinity stress: A review. Plant GrowthRegulation., 75: 391-404. |
[38] | Zhu J. K., 2001. Plant salttoleranceReview. Trends in Plant Science, 6(2), 66-71. |
[39] | Bayuelo-Jimenez, J. S., Craig, R. and Lynch, J. P. (2002). Salinitytolerance of Phaseolusspeciesduring germination &earlyseedlinggrowth. Crop Science, 42(5): 1584-1594. |
[40] | Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell Environ, 25(2), 239–250. |
[41] | Theerawitaya C., Tisarum R., Samphumphuang T., Singh P., Cha-Um S., Kirdmanee C. et Takabe. (2015). Physio-biochemical and morphologicalcharacters of halophyte legumeshrub, Acacia amplicepsseedlings in response to salt stress undergreenhouse, Frontiers in Plant Science, 6: 630. 10p. |
[42] | Haoula. F., Ferjani. H., Benelhadji. S. (2007). Effet de la salinité sur la répartition des cations (Na+, K+ et Ca2+) et de chlore (Cl-) dans les parties aériennes et les racines du Ray et du Chêne [Effect of salinity on the distribution of cations (Na+, K+ and Ca2+) and chlorine (Cl-) in the aerial parts and roots of Ray and Oak]. Biotechnologie,Agronomie, SociétéetEnvironnement, vol.11N°.3: 235-244. |
[43] | Garg, N., andSingla, R. (2004). Growth, photosynthesis nodule nitrogen and carbon fixation in the chickpea cultivars undersalt stress. Braz. J. Plant Physiol., 16, 137-146. |
[44] | Al-Sobhi, O., Al-Zaharani, H., and Al-Ahmadi, S. (2006). Effect of salinity on chlorophyll and carbohydrate contents of Calotropis procera seedlings. Scientific Journal of King Faisal University. Basic and Applied Sciences: 7, 114-277. |
[45] | Mane A. V., Karadge B. A. and Samant J. S. (2010). Salinityinduced changes in photosynthetic pigments and polyphenols of Cymbopogonnardus (L.) Rendle. Journal of Chemical and Pharmaceutical Research, 2(3), 338-347. |
[46] | AitHaddouMoulouda M., Bousrhalb A., Benyahiaa H., Benazzoouza A. (2002). Effet du stress salin sur l’accumulation de la proline et des sucressolublesdans les feuilles de trois porte-greffesd’agrumes au Maroc [Effect of salt stress on the accumulation of proline and soluble sugars in the leaves of three citrus rootstocks in Morocco]. Fruits, vol. 57, 335–340. |
[47] | Chalbi N., Hessini K., Gandour M., Mohamed S., Smaoui A., Abdelly C., Ben Youssef N. (2013). Are changes in membrane lipids and fattyacid composition related to salt-stress resistance in wild and cultivatedbarley? Journal of Plant Nutrition and Soil Science 167, 138-147. |
[48] | Rahman M. S., Miyake H., Takeoka Y., Effects of exogenous glycinebetaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.), Plant Prod. Sci. 5 (2002) 33–44. |
[49] | Ildiko K. and Gabor G. 2000. Osmotic and salt stress inducedalteration in soluble carbohydrate content in wheatseedlings, Crop Sciences 40, p 482-487. |
[50] | Parida, A., Das, A., &Mittra, B. (2004). Effects of salt on growth, ion accumulation, photosynthesis and leafanatomy of the mangrove, (Bruguieraparviflora). Trees-Structure and Function, 18, 167-174. |
[51] | Taffouo, VD.,Djiotie, N. L., Kenne, M., Din, N., Priso, J. R., Dibong, S., Akoa, A. (2008). Effect of salt stress on physiological and agronomiccharacteristics of three tropical cucurbitspecies. Journal of AppliedBioscience 10, 434-441. |
[52] | Hand Mathias Julien, Nouck Alphonse Ervé, Nassourou Antoine Maina, Abib Fanta Chimene, TonfackLibert Brice, Taffouo Victor Désiré, Youmbi Emmanuel. (2022). Influence of salt stress on growth, leaf pigmentation, ionic distribution and metabolites accumulation of Talinumtriangulare (jacq.) willd. Leafyvegetables as affected by differentcassavapeellevels. Journal of Advance Research in Food, Agriculture and Environmental Science Volume-8 | Issue-9: 2208-2417 |
[53] | Svensson (2001). Fonctionnalstudies of the role of plant dehydrins in tolerance to salinitydessication, Epsilon dissertation and graduatethesis archives dep of plant, Biology acta, University agricultural SueciaeAgraria, 259. p 68-96. |
[54] | Le Rudulier D. (2005); Osmoregulation in rhizobia: The key role of compatible solutes. Grain Leg., 42: 18 - 19. |
[55] | Hayoun H., (2013). Etude comparative de l’accumulation des dèhydrinesetmécanisme de tolérances du stress hydrique chez quelquesvariétés de blédur (TriticumdurumDesf.) [Comparative study of dehydrin accumulation and mechanism of water stress tolerance in some durum wheat varieties (Triticum durumDesf.)]. Thèse, UniversitéMentouri, Constantine Faculté de biologie Département de Biologie Végétale et Écologie 36-37. |
[56] | Setayesh M. Z., khajeh H., Bahabadi S. E. and Sabbagh S. K., 2012. Changes on proline, phenolic compound and activity of antioxidant enzymes in Anethumgraveolens L. undersalt stress. (V. Publications, Éd.) International journal of Agronomy and Plant Production, 3. 710-715. |
[57] | Abraham, E., Rig, G. S., Nagy, R., Koncz, C., and Szabados, L. (2003). Light-dependent induction of proline biosynthesis by abscisicacid and salt stress isinhibited by brassinosteroid in Arabidopsis. Plant MolecularBiology, 51, 363-372. |
[58] | Ashraf, M., Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot.59: 206-216. |
[59] | Noreen Z. and Ashraf M., 2009. Assessment of variation in antioxidativedefense system in salt-treatedpea (Pisumsativum) cultivars and its putative use as salinitytolerance markers. (Elsevier, Éd.) Jounal of plant physiology (166), pp. 1764-1774. |
[60] | Mahmoudi, H., Huang, J., Gruber, M., Kaddour, R., Lachaal, M., Ouerghi, Z., &Hannoufa, A. (2010). The impact of genotype and salinity on physiologicalfunction, secondarymetabolite accumulation, and antioxidativeresponses in lettuce. J. Agric Food Chem, 58, 5122–5130. |
[61] | Nouma, W., Siddiqui M., Basra S., Khan R., Gull T., Olson M. &Munir H. (2012). Response of Moringaoleifera to saline conditions. Int. J. Agric. Biol. (14), pp. 757-762. |
[62] | Macheix, J., Fleuriet, A., et Jay-Allemand, C. (2005). Les composésphénoliques des végétaux [Phenolic compounds in plants]. Italie: EditionLausame. 183 p. |
[63] | Lamia Hamrouni, Mohsen Hanana, ChédlyAbdelly, AbdelwahedGhorbel. (2011). Exclusion duchlorure et inclusiondu sodium: deuxmécanismes concomitantsde tolérance à la salinité chez la vignesauvageVitisviniferasubsp. Sylvestris (var.‘Séjnène̓) [Chloride exclusion and sodium inclusion: two concomitant mechanisms of salinity tolerance in wild grapevine Vitisvinifera subsp. sylvestris (var. ‘Séjnène̓)]. Biotechnol. Agron. Soc. Environ.15(3),387-400. |
[64] | Chinnusamy V., Jagendorf A. and Zhu J. K. (2005). Understanding and improvingsalttolerance in plants. Crop Science (45). 437-448. |
[65] | Levigneron A., Lopez F., Vansuyt G., Berthomieu P., Fourcroy P. et Cassedelbart F. (1995). Les plantes face au stress salin [Plants facing salt stress]. Cahiers Agriculture, 4: 263-273. |
[66] | CheikhOumarSamb, Dethie Wade, Elhadji Faye etMouhamadouMoustaphaDiaw (2020). Effet du stress salin sur la croissance de quatre provenances d’anacardier (Anacardiumoccidentale L.) en milieu semicontrôlé[Effect of salt stress on the growth of four cashew (Anacardiumoccidentale L.) provenances in a semi-controlled environment], VertigO - la revue électroniqueen sciences de l'environnement, Volume 20 numéro 2. |
[67] | Labo, A., D. Sané, S. D. Ngomet L. E. Akpo (2016). Effet du sel sur le comportement des jeunes plants de palmier à huile (Elaeisguineensis Jacq.) enBasseCasamance [Effect of salt on the behavior of young oil palm plants (Elaeisguineensis Jacq.) in Lower Casamance], Int. J. Biol. Chem. Sci. 10(3), pp. 1312-1328. |
[68] | Benmahioul B., Danguin F., etKaidHarche M. (2008). Effet du stress salin sur la germination et la croissance in vitro du pistache (Pistaciavera L.) [. Effect of salt stress on germination and in vitro growth of pistachio (Pistaciavera L.)]UniversitéAbouBekrKaïd. Tlemcen, Algerie. ComptesrendusBiologieAgronomie.331(2), 164-170. |
[69] | GénéréBenoîtetGarriou Didier. (2005). Le dessèchement des plants entre l’arrachageet la plantation: résultatsd’uneétude sur trois essences forestières [Desiccation of seedlings between uprooting and planting: results of a study on three forest species]. Forêt-entreprise 161. 58-60. |
APA Style
Chimene, A. F., Julien, H. M., Sidoine, M. D. (2024). Effect of Saline Stress on the Growth and Physiological Behavior of Young Planting Acacia nilotica in Nursery and After Transplantation. Plant, 12(4), 131-141. https://doi.org/10.11648/j.plant.20241204.16
ACS Style
Chimene, A. F.; Julien, H. M.; Sidoine, M. D. Effect of Saline Stress on the Growth and Physiological Behavior of Young Planting Acacia nilotica in Nursery and After Transplantation. Plant. 2024, 12(4), 131-141. doi: 10.11648/j.plant.20241204.16
@article{10.11648/j.plant.20241204.16, author = {Abib Fanta Chimene and Hand Mathias Julien and Malla Dari Sidoine}, title = {Effect of Saline Stress on the Growth and Physiological Behavior of Young Planting Acacia nilotica in Nursery and After Transplantation }, journal = {Plant}, volume = {12}, number = {4}, pages = {131-141}, doi = {10.11648/j.plant.20241204.16}, url = {https://doi.org/10.11648/j.plant.20241204.16}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.plant.20241204.16}, abstract = {This work consisted of studying the effect of saline constraint represented by different concentrations of NaCl (0, 2, 4, 8 and 11 g / l) at Acacianilotica on certain nursing parameters (germination, growth, biochemical and nutritional) and the survival rate one year after transplanting young clubs in field. The results obtained 14 days after seeding show that the germination rate falls below 40 g / l of NaCl and passes from 90% to 39.2% to 11 g / l of NaCl. After 3 months of stress, it is spring that the growth marked by the height, the diameter of the collar, the number of sheet and the foliar surface decrease as the NaCl concentration increases unlike ray biomass. Salinity has favored the accumulation of soluble, polyphenol, proline and total protein levels in the plant during the experimentation. Regarding the nutritional effect, NaCl negatively affects the nutritional scale of the plants. One year after transplantation, NaCl processed plantations have the best survival rates and the highest was obtained with 4 g / l of NaCl (89.61%). Thus, the submission of young Acacia nilotica plants to a salt strike of 4 g / l NaCl could allow to produce saltwoods for the salinity of the Sahelian zone of Cameroon and this fact contribute to the success of the reforestation campaigns by lower decreases of the mortality rates of transplantation. }, year = {2024} }
TY - JOUR T1 - Effect of Saline Stress on the Growth and Physiological Behavior of Young Planting Acacia nilotica in Nursery and After Transplantation AU - Abib Fanta Chimene AU - Hand Mathias Julien AU - Malla Dari Sidoine Y1 - 2024/11/26 PY - 2024 N1 - https://doi.org/10.11648/j.plant.20241204.16 DO - 10.11648/j.plant.20241204.16 T2 - Plant JF - Plant JO - Plant SP - 131 EP - 141 PB - Science Publishing Group SN - 2331-0677 UR - https://doi.org/10.11648/j.plant.20241204.16 AB - This work consisted of studying the effect of saline constraint represented by different concentrations of NaCl (0, 2, 4, 8 and 11 g / l) at Acacianilotica on certain nursing parameters (germination, growth, biochemical and nutritional) and the survival rate one year after transplanting young clubs in field. The results obtained 14 days after seeding show that the germination rate falls below 40 g / l of NaCl and passes from 90% to 39.2% to 11 g / l of NaCl. After 3 months of stress, it is spring that the growth marked by the height, the diameter of the collar, the number of sheet and the foliar surface decrease as the NaCl concentration increases unlike ray biomass. Salinity has favored the accumulation of soluble, polyphenol, proline and total protein levels in the plant during the experimentation. Regarding the nutritional effect, NaCl negatively affects the nutritional scale of the plants. One year after transplantation, NaCl processed plantations have the best survival rates and the highest was obtained with 4 g / l of NaCl (89.61%). Thus, the submission of young Acacia nilotica plants to a salt strike of 4 g / l NaCl could allow to produce saltwoods for the salinity of the Sahelian zone of Cameroon and this fact contribute to the success of the reforestation campaigns by lower decreases of the mortality rates of transplantation. VL - 12 IS - 4 ER -